Long-range two-qubit gate between nuclear spins in diamond mediated via an optical cavity. ADRIAN AUER, GUIDO BURKARD, Department of Physics, University of Konstanz, Germany — Nitrogen-vacancy (NV) centers in diamond represent a promising possibility for a solid-state based realization of a qubit due to their excellent electron- and nuclear-spin coherence properties. Single-qubit gates for the nitrogen nuclear spin have been implemented [1]. Here, we extend an earlier proposal [2] for cavity-mediated coupling between NV electron spins and develop a scheme to implement a universal two-qubit gate between 14N or 15N nuclear spins. By virtually exciting a single NV center with an external laser field, a photon can be scattered into a surrounding cavity; we show that this process depends on the spin state of the nitrogen nucleus. For the two-qubit gate, we consider two NV centers coupled to a common cavity mode and each being excited individually. Virtual cavity excitation can then mediate an effective interaction between the NV nuclear spin qubits, generating a controlled-Z gate. Operation times for the gate implementation are found to be below 100 nanoseconds, which is orders of magnitude faster than the decoherence time of nuclear spin qubits in diamond.

Adrian Auer
Department of Physics, University of Konstanz, Germany

Date submitted: 11 Nov 2014

Electronic form version 1.4