Abstract Submitted for the MAR15 Meeting of The American Physical Society

Effect of Molecular Weight on Mechanical and Electrochemical Performance of All Solid-State Polymer Electrolyte Membranes¹ RUIX-UAN HE, University of Akron, DANIEL WARD, Miami University, MAURICIO ECHEVERRI, Kent Displays Inc., THEIN KYU, University of Akron — Guided by ternary phase diagrams of polyethylene glycol diacrylate (PEGDA), succinonitrile plasticizer, and LiTFSI salt, completely amorphous solid-state transparent polymer electrolyte membranes (ss-PEM) were fabricated by UV irradiation in the isotropic melt state. Effects of PEGDA molecular weight (700 vs 6000 g/mol) on ss-PEM performance were investigated. These amorphous PEMs have superionic room temperature ionic conductivity of $\sim 10^{-3}$ S/cm, whereby PEGDA6000-PEM outperforms its PEGDA700 counterpart, which may be ascribed to lower crosslinking density and greater segmental mobility. The longer chain between crosslinked points of PEGDA6000-PEM is responsible for greater extensibility of $\sim 80\%$ versus $\sim 7\%$ of PEGDA700-PEM. Besides, both PEMs exhibited thermal stability up to 120 °C and electrochemical stability versus Li^+/Li up to 4.7V. $LiFePO_4/PEM/Li$ and Li₄Ti₅O₁₂ /PEM/Li half-cells exhibited stable cyclic behavior up to 50 cycles tested with a capacity of $\sim 140 \text{mAh/g}$, suggesting that LiFePO₄/PEM/Li₄Ti₅O₁₂ may be a promising full-cell for all solid-state lithium battery.

¹We thank NSF-DMR 1161070 for providing funding of this project.

Ruixuan He University of Akron

Date submitted: 11 Nov 2014

Electronic form version 1.4