Exotic magnetism on the quasi-FCC lattices of the d^3 double perovskites $La_2NaB'O_6$ ($B' = Ru, Os$)

ADAM ACZEL, Quantum Condensed Matter Division, Oak Ridge National Laboratory

B-site ordered double perovskites with quantum spins $S = 1/2$ (d^1) and $S = 1$ (d^2) on the B$'$ site have attracted a great deal of recent interest, due to the possibility of studying 4d and 5d magnetism combined with magnetic frustration on the face-centered-cubic (FCC) lattice. There has been less focus on d^3 systems, as they are generally expected to behave more classically and yield simple, commensurate magnetic ground states. In contrast, we find evidence for long-range and short-range ($\xi = 70$ Å at 4 K) incommensurate magnetic order on the quasi-FCC lattices of the monoclinic double perovskites La_2NaRuO_6 and La_2NaOsO_6 respectively. Incommensurate magnetic order on the FCC lattice has not been predicted by mean field theory, but may arise via a delicate balance of inequivalent nearest neighbor and next nearest neighbor exchange interactions. Furthermore, in the Ru system with long-range order, inelastic neutron scattering reveals a spin gap $\Delta = 2.75$ meV. Magnetic anisotropy is generally minimized in the more familiar octahedrally-coordinated $3d^3$ systems, so the large gap observed for La_2NaRuO_6 may result from the significantly enhanced value of spin-orbit coupling in this $4d^3$ material.