Al-Air Batteries: Fundamental Thermodynamic Limitations from First Principles Theory

LEANNE D. CHEN, JENS K. NOERSKOV, ALAN C. LUNTZ, SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory/Stanford University — The Al-air battery possesses high theoretical specific energy (4140 Wh/kg) and is therefore an attractive candidate for vehicle propulsion applications. However, the experimentally observed open-circuit potential is much lower than what thermodynamics predicts, and this potential loss is widely believed to be an effect of corrosion. We present a detailed study of the Al-air battery using density functional theory. The results suggest that the difference between bulk thermodynamic and surface potentials is due to both the effects of asymmetry in multi-electron transfer reactions that define the anodic dissolution of Al and, more importantly, a large chemical step inherent to the formation of bulk Al(OH)3 from surface intermediates. The former results in an energy loss of 3%, while the latter accounts for 14–29% of the total thermodynamic energy depending on the surface site where dissolution occurs. Therefore, the maximum open-circuit potential of the Al anode is only 1.87 V vs. SHE in the absence of thermal excitations, contrary to 2.34 V predicted by bulk thermodynamics at pH 14.6. This is a fundamental limitation of the system and governs the maximum output potential, which cannot be improved even if corrosion effects were completely suppressed.

1Supported by the Natural Sciences and Engineering Research Council of Canada and the ReLiable Project (#11-116792) funded by the Danish Council for Strategic Research

Leanne D. Chen

SUNCAT Center for Interface Science and Catalysis,
SLAC National Accelerator Laboratory/Stanford University

Date submitted: 11 Nov 2014