Predicting a Ferrimagnetic-Ferroelectric Phase of Zn$_2$FeOsO$_6$ with Strong Magnetoelectric Coupling

HONGJUN XIANG, P.S. WANG, Fudan University, WEI REN, Shanghai University, L. BELLAICHE, University of Arkansas — Multiferroic materials, in which ferroelectric and magnetic ordering co-exist, are of fundamental interest for the development of novel memory devices that allow for electrical writing and non-destructive magnetic readout operation. The great challenge is to create room temperature multiferroic materials with strongly coupled ferroelectric and ferromagnetic (or ferrimagnetic) orderings. BiFeO$_3$ has been the most heavily investigated single-phase multiferroic to date due to the coexistence of its magnetic order and ferroelectric order at room temperature. However, there is no net magnetic moment in the cycloidal (antiferromagnetic-like) magnetic state of bulk BiFeO$_3$, which severely limits its realistic applications in electric field controlled spintronic devices. Here, we predict that double perovskite Zn$_2$FeOsO$_6$ is a new multiferroic with properties superior to BiFeO$_3$. First, there are strong ferroelectricity and strong ferrimagnetism at room temperature in Zn$_2$FeOsO$_6$. Second, the easy-plane of the spontaneous magnetization can be switched by an external electric field, evidencing the strong magnetoelectric coupling existing in this system. Our results suggest that ferrimagnetic 3d-5d double perovskite may therefore be used to achieve voltage control of magnetism in future spintronic devices.

Hongjun Xiang
Fudan University