Abstract Submitted for the MAR15 Meeting of The American Physical Society

Basic Variables of Quantum Mechanics for Electrons in Electrostatic and Magnetostatic Fields XIAO-YIN PAN, Ningbo University, VIRAHT SAHNI, The Graduate Center, CUNY — We consider a system of N electrons in an external electrostatic $\mathcal{E} = -\nabla v(\mathbf{r})$ and magnetostatic $\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r})$ fields, and the Hamiltonian to include the interaction of the latter with both the orbital and spin angular momentum. We prove the one-to-one relationship $\{v(\mathbf{r}), \mathbf{A}(\mathbf{r})\} \leftrightarrow \{\rho(\mathbf{r}), \mathbf{j}(\mathbf{r})\}$, where $\rho(\mathbf{r})$ and $\mathbf{j}(\mathbf{r})$ are the nondegenerate ground state density and physical current density. The proof accounts for the many-toone relationship between the $\{v(\mathbf{r}), \mathbf{A}(\mathbf{r})\}$ and the ground state Ψ . In parallel with the Hohenberg-Kohn theorem proof in which the wave function Ψ of the different physical systems considered is constrained¹ to a fixed electron number N, the corresponding Ψ in our proof is constrained to having the same total orbital \mathbf{L} and spin \mathbf{S} angular momentum. Thus, $\{\rho(\mathbf{r}), \mathbf{j}(\mathbf{r})\}$ constitute the basic variables in the rigorous HK sense.

¹X.-Y. Pan and V. Sahni, J. Chem. Phys. **132**, 164116 (2010)

Viraht Sahni The Graduate Center, CUNY

Date submitted: 11 Nov 2014

Electronic form version 1.4