Fluctuation effects in a two-component p-wave superconductor

MARK H. FISCHER, EREZ BERG, Weizmann Institute of Science — For a tetragonal material, order parameters of p_x and p_y symmetry are related by rotation and hence have the same T_c. This degeneracy can be lifted by a symmetry-breaking field, like (uniaxial) in-plane strain, such that at T_c, the order parameter is only of p_x or p_y symmetry. Only at a lower temperature also the respective other order parameter condenses. We analyze consequences of (thermal) fluctuations on these transition temperatures within a Ginzburg-Landau approach to obtain a comprehensive strain-temperature phase diagram. We find that the fluctuations can both enhance or suppress the effect of the symmetry breaking field, and even drive the system into a preemptive chiral phase. Possible consequences for the spin-triplet superconductor Sr$_2$RuO$_4$ will be discussed.

Mark Fischer
Weizmann Institute of Science

Date submitted: 12 Nov 2014

Electronic form version 1.4