Characterization of structural defects in GST based nano-PCM devices through resistance drift measurements1 IBRAHIM CINAR, EGE-CAN COGULU, AISHA GOKCE, Bogazici University, BARRY STIPE, JORDAN KATINE, HGST, A Western Digital Company, GULEN AKTAS, OZHAN OZATAY, Bogazici University — Phase change memory (PCM) is a promising non-volatile data storage technology with its high signal to noise ratio and superior scalability. Resistance drift in amorphous phase of the phase change material poses a crucial reliability problem, especially in multiple-bit-per cell PCM devices. The resistance of the amorphous phase uncontrollably increases with time after a reset operation which alters the read/write conditions of the device. Structural relaxation (SR) through a defect annihilation process is considered to be the underlying physical mechanism for resistance drift. Here, we report on our measurements of the resistance drift in a phase change memory device with a single layer Ge\textsubscript{2}Sb\textsubscript{2}Te\textsubscript{5} (GST) material not only in the amorphous state but also in the intermediate resistance state in devices with square top contact geometry which enables us to assess the reliability of multiple-bit per cell PCM memory devices. Through an analysis of electrical measurements as a function of time and temperature for increasing annealing times, we estimate a rate of change in trap density for both amorphous and mixed phases of the GST material after a switching operation. Our study allows engineering the phase change materials and optimizing programing conditions for future PCM applications.

1TUBITAK under contract number 113F385, Bogazici University Research Fund, 12B03M1, and European Union FP7 Marie Curie International Re-integration Grant PCM-256281

Ibrahim Cinar
Bogazici University

Date submitted: 12 Nov 2014

Electronic form version 1.4