Specific Heat in Zero and Applied Magnetic Field of Overdoped \textbf{Ba}_{1-x}\textbf{K}_x\textbf{Fe}_2\textbf{As}_2: Analysis of The Multigap Behavior and Anisotropies\(^1\)

G.R. STEWART, Physics Department, University of Florida, Gainesville, FL 32611, J.S. KIM, Physics Department, University of Florida, Gainesville, FL 32611, YONG LIU, Division of Materials Sciences and Engineering, Ames Lab., US DOE, Ames, IA 50011, THOMAS A. LOGRASSO, Division of Materials Sciences and Engineering, Ames Lab, US DOE, and Dept. of Materials Science and Engineering, Iowa State Univ., Ames, IA 50011 — Specific heat measurements down to 0.4 K and up to \(H_{c2}\) on single crystals of two different compositions of overdoped \textbf{Ba}_{1-x}\textbf{K}_x\textbf{Fe}_2\textbf{As}_2 with \(T_c\) values of 5.9 K (\(x\approx0.93\)) and 8.9 K (\(x\approx0.85\)) are reported. The possibility of mixed/crossover behavior in the pairing symmetry in this composition range has been discussed in the literature. The zero field data analysis for both samples results in essentially the same two gap values: \(2\Delta/kT_c=0.9\) and 3.5 while the field data indicate pronounced non-linearity in \(\gamma\) vs \(H\) both as the lower gap is suppressed by about 1 T but also in higher fields up to \(H_{c2}\approx5.5\) T. Analysis of the field data to investigate the gap anisotropies will be presented.

\(^1\)Work at Florida supported by US DOE, BES contract no. DE-FG02-86ER45268 and at Ames by US DOE, BES contract no. DE-AC02-07CH11358.

G. R. Stewart
Physics Department, University of Florida

Date submitted: 12 Nov 2014

Electronic form version 1.4