Mesoscale modeling of functional properties in core-shell nanoparticles1 JOHN MANGERI, Department of Physics, University of Connecticut, Storrs, CT, United States, OLLE HEINONEN2, Material Science Division, Argonne National Laboratory, Lemont, IL, United States, DMITRY KARPEEV, University of Chicago, Chicago, IL, United States, SERGE NAKHMANSOn, Institute of Materials Science, University of Connecticut, Storrs, CT, United States — Core-shell nanoparticle systems of Zn-ZnO and ZnO-TiO\textsubscript{2} are studied computationally using the highly scalable MOOSE finite-element framework, developed at Idaho National Lab. The elastic anisotropic mismatch of the core and shell create an imprinting effect within the shell that produces a wide variation of strains. Due to this diversity of strains, the sharp band gap edges of the bulk semiconductor are observed to be “thinned-out” much like amorphous silicon. We show that a variety of factors, such as particle size, core-to-shell volume ratio, applied hydrostatic pressure, shell microstructure, as well as the effect of surface elasticity, can influence the distribution of optical band-gap values within the particle, which may prove useful within the field of photovoltaics.

1Part of the work by O.H. was supported by award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Material Design.

2Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL, United States

John Mangeri
Department of Physics, University of Connecticut, Storrs, CT, United States

Date submitted: 12 Nov 2014
Electronic form version 1.4