Large local distortions around the Ba site in $\text{Ba}_8\text{Ga}_{16}\text{X}_{30}$, $\text{X}=\text{Si, Sn}$

TREVOR KEIBER, Univ of California-Santa Cruz, FRANK BRIDGES, PATRICK NAST, UC Santa Cruz, SCOTT MEDLING, Australian National University, TOSHIRO TAKABATAKE, Hiroshima University — We report an Extended X-ray Absorption Fine Structure (EXAFS) analysis of thermoelectric type-I clathrates, $\text{Ba}_8\text{Ga}_{16}\text{X}_{30}$, $\text{X}=\text{Sn, Si}$. These clathrates have a cage-like crystal structure filled with “rattler” atoms (Ba) located near the center of the cages (Ga-X). In contrast to the results for $\text{Ba}_8\text{Ga}_{16}\text{Ge}_{30}$, our results show that for $\text{X}=\text{Sn, Si}$ the average pair distances within the cages (Ga-Sn, Ga-Ga, Ga-Si, Sn-Sn) are significantly different than the average distances found from diffraction. Direct measurements of the Ba K edge suggests that the environment about Ba is very highly disordered for $\text{X}=\text{Sn, Si}$ compared to $\text{X}=\text{Ge}$, with surprisingly short Ba-X/Ga distances; likely the Ba2 site is significantly off center. For Si, the Ba K first neighbor peak is substantially reduced in size and shifted to lower r due to interference effects from many different Ba neighbor distances. For $\text{X}=\text{Sn}$ the Ba-Ga/Sn distances are even shorter, and there is a split peak with very low amplitude suggesting a very disordered environment. The mixed distances of the cage atoms, the very short Ba-Ga/X distances, as well as the disorder about the Ba site, suggest that the cage structure is buckled. This disorder will lead to increased scattering for both phonons and electrons.

1This work supported under NSF grant DMR1005568.

Trevor Keiber
Univ of California-Santa Cruz