Shear modulus of solid 3He in the bcc and hcp phases1 JOHN BEAMISH, ZHIGANG CHENG, FABIEN SOURIS, University of Alberta — The shear modulus of solid hcp 4He decreases significantly at temperatures above 100 mK [1, 2]. This is due to dislocations which are localized when pinned by 3He impurities at low temperature but become mobile when 3He impurities “evaporate” at high temperature. The unpinned dislocations move freely in the basal plane of the hcp structure. This produces anisotropic and extraordinarily large softening of the shear elastic constant C_{44}, an effect referred to as “giant plasticity” [2]. Previous measurements [3] on solid 3He showed similar shear modulus changes in the hcp phase but not in the bcc phase. Here, we report new shear modulus measurements in both the bcc and hcp phases. 3He. These show a similar shear modulus anomaly in the bcc phase, indicating that dislocation softening is not unique to hcp phase of helium. We compare our results for bcc and hcp 3He to those hcp 4He, and discuss the roles that lattice structure and quantum statistics play in dislocation motion and impurity pinning.

1Research supported by NSERC Canada

John Beamish
University of Alberta

Date submitted: 12 Nov 2014
Electronic form version 1.4