Is Sodium a Superconductor Under Pressure? ROXANNE TUTCHTON, The Colorado School of Mines, XIAO-JIA CHEN, The Carnegie Institution of Washington, ZHIGANG WU, The Colorado School of Mines — Superconductivity has been discovered in compressed Li with a critical temperature (T_c) of 14 K. The other alkali metals are, theoretically, predicted to become superconductors under pressure. Sodium (Na) is the notable exception. Previous ab initio calculations considered superconductivity only in the BCC and FCC structures of alkali metals; however, Na goes through complicated, structural phase transitions at higher pressures until it becomes an insulator around 260 GPa. We have performed first-principles linear response calculations for four metallic phases (BCC, FCC, cI16 and tI19) of Na to compute lattice dynamics and the electron-phonon spectral function. The electron-phonon coupling parameter as well as T_c were then determined as functions of pressure. Our results suggest that the critical temperature for Na rises with increasing pressure to a maximum T_c of 1.2 K in the cI16 phase, then it decreases rapidly to zero K at higher pressures.