Magnetization pumping and dynamics in a uniform Dzyaloshinskii-Moriya magnet

ALEXEY KOVALEV, UTKAN GÜNGÖRDÜ, University of Nebraska-Lincoln — We formulate a phenomenological description of thin ferromagnetic layers with inversion asymmetry where the long-wavelength magnetic dynamics experiences magnon current-induced torques and leads to magnon-motive forces. We first construct a phenomenological theory based on irreversible thermodynamics, taking into account the symmetries of the system. Furthermore, we confirm that these effects originate from Dzyaloshinskii-Moriya interactions from the analysis based on the stochastic Landau-Lifshitz-Gilbert equation. Our phenomenological results can be generalized to other systems such as pyrochlore crystals and chiral magnets. Possible applications include spin current generation, magnetization reversal and magnonic cooling.

Alexey Kovalev
University of Nebraska-Lincoln

Date submitted: 13 Nov 2014