Abstract Submitted for the MAR15 Meeting of The American Physical Society

High mobility field effect transistors of SnO_x on glass substrates made by reactive sputtering of Sn metal CHANJONG JU, CHULKWON PARK, HYEONSEOK YANG, USEONG KIM, YOUNG MO KIM, KOOKRIN CHAR, Seoul National University — We report on the electrical properties of SnO_x thin films and the performance of their field effect transistors on glass substrates made by reactive sputtering of a Sn metal target. We investigated the electrical properties of SnO_x films as a function of the oxygen pressure. The mobility of the SnO_x films on glass substrates after post-deposition annealing at 400 C was as high as $15.3 \text{ cm}^2/\text{Vs}$ while its carrier density was $4.42 \times 10^{18} \text{ cm}^{-3}$. By x-ray diffraction, we have found that the films are mixture of SnO and SnO_2 phases, suggesting possibility of further enhancement of the electrical properties if the phase can be controlled. Nevertheless, we will report on the performance of thin film transistors using polycrystalline SnO_x as the channel layer and the atomic-layer-deposited AlO_x and HfO_x as the gate oxide.

> Chanjong Ju Seoul National University

Date submitted: 13 Nov 2014

Electronic form version 1.4