New Topological Superconducting phase in Superconductor/2D Topological Insulator/Superconductor Junction

YAO LU, KAM TUEN LAW, The Hong Kong University of Science and Technology — It is well known that a Josephson junction built on top of helical edge states of the topological insulator traps two Majorana fermions when the phase difference between the two superconductors is π and the system can be considered as a DIII class topological superconductor. In this work, we show that a narrow strip of two dimensional topological insulator coupled to two superconductors, forming a Josephson junction, can support a new topological phase in the presence of an in plane magnetic field. In this phase, each end of the strip of the topological insulator supports a single Majorana fermion for a wide range of phase difference between the two superconductors. This topological phase can be revealed by Josephson current measurements and tunneling spectroscopy experiments.

Yao Lu
The Hong Kong University of Science and Technology

Date submitted: 13 Nov 2014

Electronic form version 1.4