Scaling and memory effects in the reentrant spin glass phase of nanostructured Mn$_x$TaS$_2$1 PAUL SHAND, JOHN DANKER, XUN XIAO, TIM KIDD, LAURA STRAUSS, University of Northern Iowa — We have investigated the nature of the reentrant spin glass phase of nanostructured Mn-intercalated TaS$_2$. The sample consisted of bundles of nanoscale fibers with an average atomic concentration of intercalated Mn of 22%. The sample exhibits a ferromagnetic transition at 74 K and a transition to a cluster glass state at 40 K. The ac susceptibility measured in small dc bias fields near the cluster glass transition exhibited scaling behavior, indicating a magnetic-field dependent crossover to glassy dynamics. At temperatures below the cluster-glass transition, the nature of the dynamics was probed by ac susceptibility and zero-field cooled (ZFC) magnetization measurements. Aging and memory effects were observed, consistent with the non-equilibrium dynamics exhibited by glassy magnetic systems. In particular, we probed the ZFC magnetization memory effect as a function of cooling rate, aging time and magnetic field. The behavior is explained in terms of domain growth within the framework of droplet theory.

1Supported by National Science Foundation Grant No. DMR 1206530

Paul Shand
University of Northern Iowa

Date submitted: 13 Nov 2014