Confinement effect on Anderson-Higgs modes in superfluid 3He-B

T. MIZUSHIMA, Osaka University, J.A. SAULS, Northwestern Univ — Superfluid 3He is a prototype to observe the spectrum of Anderson-Higgs (AH) modes associated with spontaneous symmetry breaking. In bulk superfluid 3He, AH modes have been observed experimentally through attenuation of zero sound, propagation of transverse sound and its acoustic Faraday rotation. Starting from a Lagrangian formulation, we examine the AH modes of 3He-B confined in a restricted geometry. For bulk 3He-B this formalism leads to the well known spectrum of bosonic collectives modes of the bulk B-phase labelled by the quantum numbers for total angular momentum, $J = 0, 1, 2, \ldots$, the projection along an axis, $J_z = -J, \ldots, +J$, and the parity under particle-hole conversion, $K = \pm1$. For the equilibrium phases of 3He confinement induces pair breaking and leads to symmetry breaking, giving rise to a rich topological phase diagram. In terms of the bosonic excitations, we find that confinement induces symmetry breaking and leads to mixing of modes with different J, as well as to level splittings of the AH modes that are otherwise degenerate in bulk 3He-B. We find a new spectrum of Bosonic modes is generated that are bound to the surface of superfluid 3He in a restricted geometry. We also report on the coupling of the AH modes to ultra-sound.