Abstract Submitted for the MAR15 Meeting of The American Physical Society

Hole doping study in antiferromagnetic BaFe₂Se₃ and BaMn₂As₂¹ JIN-KE BAO, GUANG-HAN CAO, Zhejiang Univ — Motivated by the close relationship between antiferromagnetism and superconductivity, we studied hole doping in two antiferromagnetic compounds BaFe₂Se₃ and BaMn₂As₂. BaFe₂Se₃ has a block antiferromagnetic transition around 250 K with a magnetic moment 2.8 $\mu_{\rm B}$ /Fe and BaMn₂As₂ exhibits a G-type antiferromagnetism with a large Néel temperature $T_{\rm N} = 625$ K and a large order moment 3.9 $\mu_{\rm B}$ /Mn. We did the explicit investigations on the Ba_{0.6}K_{0.4}Fe₂Se₃ compound which had anisotropic Heisenberg-like spin glass and variable range hopping conductivity [J. K. Bao et al., J. Phys.: Condens. Matter 26, 026002 (2014)]. As for the semiconducting BaMn₂As₂, potassium doping introduces holes into this system and makes it a metal. Moreover, weak ferromagnetic transition appears for the heavily potassium doping [J. K. Bao et al., Phys. Rev. B 85, 144523 (2012)]. However, the origin of weak ferromagnetism in the heavily doped Ba_{1-x}K_xMn₂As₂ is still an open question.

¹Work supported by National Basic Research Program of China (No. 2011CBA00103?and National Science Foundation of China (No. 11190023).

Jinke Bao Zhejiang Univ

Date submitted: 13 Nov 2014

Electronic form version 1.4