Abstract Submitted for the MAR15 Meeting of The American Physical Society

CaMn₂Sb₂: Spin Waves Near a Tricritical Point of the Antiferromagnetic Honeycomb Lattice¹ DANIEL MCNALLY, Stony Brook University, JACK SIMONSON, SUNY Farmingdale, JED KISTNER-MORRIS, GREG SMITH, JULIAN HASSINGER, Stony Brook University, LISA DEBEER-SCHMIDT, ALEXANDER KOLESNIKOV, Spallation Neutron Source, Oak Ridge National Lab, MEIGAN ARONSON, Stony Brook University — The classical Heisenberg model for a honeycomb lattice of spins predicts at least three tricritical points, where three different long range ordered magnetic phases co-exist, depending on the relative strength of the nearest and next-nearest exchange interactions $J_{1,2}$. We performed inelastic neutron scattering at T = 5 K if $T_N = 85 \text{ K}$ on oriented single crystals of the antiferromagnetic insulator CaMn₂Sb₂, where the Mn spins $\mu = 2.8 \ \mu_B/Mn$ form a corrugated honeycomb lattice. Spin wave excitations were observed up to $E \approx 24$ meV and these data were fit to the spin wave dispersion expected from the classical Heisenberg model to determine the individual exchange interactions $SJ_1 = 8.22 \pm 0.23 \text{ meV}$, $SJ_2 = 1.29 \pm 0.09 \text{ meV}$, $SJ_c = -0.56 \pm 0.04$ meV, where J_c is the exchange interaction between honeycomb planes. The quantum fluctuations resulting from proximity to the tricritical point at $J_2/J_1 = 1/6$ are responsible for the relatively low ordering temperature of $CaMn_2Sb_2$, $T_N = 85$ K, much reduced from the mean field ordering temperature $T_{MFT} = 2zJ_1S(S+1)/3k_B$ = 560 K.

¹We acknowledge the Office of the Assistant Secretary of Defense for Research and Engineering for providing the NSSEFF funds that supported this research.

> Daniel McNally Stony Brook University

Date submitted: 13 Nov 2014

Electronic form version 1.4