Abstract Submitted for the MAR15 Meeting of The American Physical Society

The effect of the interface termination on the atomic and electronic structure of $LaNiO_3/PbZr_xTi_{1-x}O_3^1$ ANDREI MALASHEVICH, MATTHEW S. J. MARSHALL, ANKIT S. DISA, FREDERICK J. WALKER, CHARLES H. AHN, SOHRAB ISMAIL-BEIGI, Center for Research on Interface Structures and Phenomena and Department of Applied Physics, Yale University — Thin film metal oxide/ferroelectric interfaces can exhibit dependence of conductivity on the polar state of the ferroelectric layer. This property has potential for technological applications in non-volatile field-effect devices. Recently, we demonstrated that ferroelectric PbZr_{0.2}Ti_{0.8}O₃ (PZT) can be used to modulate conductivity of the (001)-oriented LaNiO₃/PZT interface. We found that changes in conductivity result primarily from large mobility changes in the interfacial channel region. In this study, we investigate the effect of the LaNiO₃ film termination (LaO vs NiO₂) on the atomic structure and electronic properties of $LaNiO_3/PZT$. We present the results of the first-principles calculations of the atomic structure of the related $LaNiO_3/PbTiO_3$ interface for both $LaNiO_3$ terminations. For each termination, we analyze the dependence of the atomic structure and electronic properties on the ferroelectric $PbTiO_3$ polar state and compare the results to available experimental observations.

¹This work is supported by the National Science Foundation through grant MRSEC NSF DMR-1119826

Andrei Malashevich Center for Research on Interface Structures and Phenomena and Department of Applied Physics, Yale University

Date submitted: 13 Nov 2014

Electronic form version 1.4