Abstract Submitted for the MAR15 Meeting of The American Physical Society

Remarkably robust and correlated coherence and antiferromagnetism in $(Ce_{1-x}La_x)Cu_2Ge_2$ single crystals H. HODOVANETS, S.L. BUD'KO, W.E. STRASZHEIM, V. TAUFOUR, E.D. MUN, H. KIM, P.C. CAN-FIELD, Ames Laboratory and Department of Physics & Astronomy, Iowa State University, Ames, IA — We present results of transport and thermodynamic measurements on La diluted Kondo lattice compound CeCu₂Ge₂. La-substitution suppresses T_N in an almost linear fashion from ~ 4 K, for x = 0, to below 0.36 K, for x > 0.8. Curiously, the system also shows low temperature coherent scattering below T_{coh} up to ~ 0.9 of La, indicating a small percolation limit ~ 9% of Ce that separates a coherent state from a single-ion Kondo impurity state. $T_{coh}(H)$ was found to have different functional dependencies in coherent and single-ion regimes. Surprisingly, $(T_{coh})^2$ was found to be proportional to T_N over wide range of x. For Ce concentrations, y = 1 - x, in the range $0.01 \le y \le 0.08$, T_{min} in the resistivity data is proportional to $y_{Ce}^{1/5}$ and field-dependent thermopower shows features as expected for the single-ion Kondo impurity. This work was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358 and the AFOSR-MURI grant No. FA9550-09-1-0603.

> Halyna Hodovanets Ames Laboratory and Department of Physics & Astronomy, Iowa State University, Ames, IA

Date submitted: 13 Nov 2014

Electronic form version 1.4