Micromagnetic Modeling of Reversal Nucleation in Core/Shell Exchange-Spring Structures1 J.S. JIANG, SAM BADER, Argonne National Laboratory — Nanocomposite exchange-spring permanent magnet materials promise superior performance and are a potential solution to the supply criticality in rare earth elements \cite{1}. The nucleation of magnetization reversal in cylindrical and spherical soft core/hard shell exchange-spring structures has been investigated by solving the linearized Brown’s equation perturbatively, and has been verified with numerical simulations \cite{2}. Accounting for the magnetostatic self-interaction field leads to a modification to the proposed quasi-coherent “bulging” mode\cite{3} of nucleation for small core sizes. The modified curling mode, where the magnetization configuration is vortex-like and flux-closed, becomes favored at large core sizes. The mode crossover occurs at a core diameter of approximately twice the exchange length for the cylindrical geometry. Since flux-closure allows magnetic elements to be densely packed without affecting the nucleation field, a potential direction for improving permanent magnet materials is to induce the modified curling mode by creating a soft-cylinder-in-hard-matrix exchange-spring microstructure.

1This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

J. S. Jiang
Argonne National Laboratory

Date submitted: 13 Nov 2014
Electronic form version 1.4