Abstract Submitted for the MAR15 Meeting of The American Physical Society

Probing the Interlayer Coupling of Twisted Bilayer MoS_2 Using Photoluminescence Spectroscopy¹ SHENGXI HUANG, XI LING, Massachusetts Inst of Tech-MIT, LIANGBO LIANG, HUMBERTO TERRONES, VIN-CENT MEUNIER, Rensselaer Polytechnic Institute, JING KONG, MILDRED DRESSELHAUS, Massachusetts Inst of Tech-MIT — Two-dimensional molybdenum disulfide (MoS_2) is a promising material for optoelectronic devices due to its strong and stable photoluminescence emissions. In this work, the photoluminescence spectra of twisted bilayer MoS_2 are investigated, revealing a tunability of the interlayer coupling of bilayer MoS₂. For the twisted angle 0° or 60° , the photoluminescence from the trion and exciton of bilayer MoS_2 shows the highest intensity ratio, and the trion binding energy reaches its maximum value. For the twisted angle 30° or 90° , the situation is the opposite. These experimental observations are mainly attributed to the change of the interlayer coupling with the twisted angles. The first-principles density functional theory analyses further confirm the change of the interlayer coupling with the twisted angle, and these analyses interpret and support our experimental results.

¹The work is supported by NSF award # NSF/DMR 0845358, NSF/DMR 1004147 and ECS-0335765; NYSTAR program C080117.

Shengxi Huang Massachusetts Inst of Tech-MIT

Date submitted: 13 Nov 2014

Electronic form version 1.4