Abstract Submitted for the MAR15 Meeting of The American Physical Society

Transport Signatures of Fermi Surface Topology in BiTeI LINDA YE, University of Tokyo, JOSEPH CHECKELSKY, Massachusetts Institute of Technology, FUMITAKA KAGAWA, YOSHINORI TOKURA, RIKEN Center for Emergent Matter Science — The giant bulk Rashba spin-orbit coupling in BiTeI makes it not only an interesting spintronics system but also a host of an effect Dirac-like electronic structure of fundamental interest. As a function of lowering the Fermi level E_F across the associated Dirac point ($E_F = 0$), the Fermi surface of BiTeI changes its topology: from a spindle-torus ($E_F > 0$) through a horn-torus ($E_F = 0$) to a ring-torus ($E_F < 0$). Here we report a systematic evolution of the magnetoresistance across these energy boundaries in high quality single crystals exhibiting Shubnikov-de Haas oscillations. We further discuss the physical origin of the detailed E_F /field/temperature dependences and remark on the relevance of this study to band crossings generally occurring in 3D systems.

> Linda Ye Massachusetts Institute of Technology

Date submitted: 13 Nov 2014

Electronic form version 1.4