Strongly Constrained and Appropriately Normed (SCAN) Meta-Generalized Gradient Approximation for Exchange and Correlation

JIANWEI SUN, ADRIENN RUZSINSZKY, JOHN PERDEW, Department of Physics, Temple University — Meta-generalized gradient approximations (meta-GGAs) construct the exchange-correlation (xc) energy density from the local electron density, its gradient, and the orbital kinetic energy density. They are the most accurate of the computationally-efficient semilocal density functionals. We construct a SCAN meta-GGA which satisfies all the known exact constraints that a meta-GGA can, including a new tight lower bound on the exchange energy [1]. SCAN is constructed as an interpolation/extrapolation on α, the dimensionless variable that can recognize covalent single ($\alpha \approx 0$), metallic ($\alpha \approx 1$), and weak ($\alpha \gg 1$) bonds [2]. A few parameters are included for appropriate norming on systems where a meta-GGA should be especially accurate due to xc hole localization.

1Supported by NSF (DMR).