Temperature-driven band inversion in $\text{Pb}_{0.77}\text{Sn}_{0.23}\text{Se}$: Optical and Hall-effect studies

NAWEEN ANAND, Univ of Florida - Gainesville, FL, ZHIGUO CHEN, NHMFL Florida State University, Tallahassee, FL, SANAL BU-VAEV, Univ of Florida - Gainesville, FL, C. MARTIN, Ramapo college, Mahwah, NJ, KAMAL CHOUHDHARY, Univ of Florida - Gainesville, FL, GENDA GU, Brookhaven National Lab, Upton, NY, S. S goTTT, Univ of Florida - Gainesville, FL, ZHIQIANG LI, NHMFL Florida State University, Tallahassee, FL, A. HEBARD, D. TANNER, Univ of Florida - Gainesville, FL — Optical and Hall-effect measurements have been performed on single crystals of $\text{Pb}_{0.77}\text{Sn}_{0.23}\text{Se}$, a IV-VI mixed chalcogenide. The temperature dependent (10-300 K) reflectance was measured over 40-7000 cm$^{-1}$ (5-870 meV) with an extension to 15,500 cm$^{-1}$ (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy optical spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Some of the results from optical studies were compared with density function theory calculations.

Naween Anand
Univ of Florida - Gainesville, FL

Date submitted: 13 Nov 2014