Antiferromagnetic Spin Fluctuations and Pseudogap Behavior in Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ Studied by 75As NMR

JINFANG CUI, Ames Laboratory and Chem. Dept., Iowa State University, SHENG RAN, SERGEY BUD’KO, PAUL CANFIELD, YUJI FURUKAWA, Ames Laboratory and Dept. of Phys. and Astro., Iowa State University — 75As NMR measurements of single-crystalline Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ have been carried out for four different doping concentration crystals ($x = 0.023, 0.028, 0.033, 0.059$) annealed at 350°C [1]. Co-doped CaFe$_2$As$_2$ is a compound in 122 family of iron-pnictide superconductors with three principle phases exhibited: paramagnetic (PM), antiferromagnetic (AFM) and superconducting (SC) states. The magnetic phase transition to AFM state occurs at $T_N = 180$K at $x=0$ and is suppressed to $T_N = 53$K for $x=0.028$, which is accompanied by a structural phase transition from tetragonal to orthorhombic phases. 75As NMR was used to study the low energy spin dynamics via Knight shift (K) and spin-lattice relaxation rate ($1/T_1$) measurements. From our analysis of the temperature dependence of both K and $(T_1 T)^{-1}$ in $x=0.028$ ($T_N = 53$K), 0.033 ($T_c = 9$K) and 0.059 ($T_c = 10$K), we found a gradual decrease of AFM spin fluctuations below $T^* = 88$K for $x=0.028$, 72K for $x=0.033$ and 41K for $x=0.059$, respectively, indicating the possible pseudogap behavior in spin excitation spectrum in the system.

1Supported by USDOE under the Contract No. DE-AC02-07CH11358