High-T_c superconducting state of metal nanoclusters: Experimental observation

VITALY KRESIN, AVIK HALDER, University of Southern California — A spectroscopic investigation of size-resolved aluminum nanoclusters, Al$_n$, has revealed a novel phenomenon: a rapid rise in the near-threshold density of states of several specific clusters with decreasing temperature. The effect is especially prominent in the closed-shell “magic” cluster Al$_{66}$. The characteristics of this behavior are fully consistent with a pairing transition, implying a high-temperature superconducting state with $T_c >\sim 100$ K. This value exceeds that of bulk aluminum by two orders of magnitude. This is the first experimental observation of high-temperature superconductivity in nanocluster particles. Our results highlight the promise of metal nanoclusters as high-T_c building blocks for materials and networks.

1Research supported by NSF DMR-1206334.

Vitaly Kresin
University of Southern California

Date submitted: 13 Nov 2014

Electronic form version 1.4