Quantized conductance through reconfigurable 1D channels

SHICHENG LU, ANIL ANNADI, GUANGLEI CHENG, MICHELLE TOMCZYK, MENGCHEN HUANG, University of Pittsburgh, HYUNGWOO LEE, SANGWOO RYU, CHANG-BEOM EOM, University of Wisconsin-Madison, PATRICK IRVIN, JEREMY LEVY, University of Pittsburgh — In recent years, a high mobility two-dimensional electron gas LaAlO$_3$/SrTiO$_3$ (LAO/STO) system has become a model system to investigate various exotic ground states of condensed matter physics. This system can co-host superconductivity, magnetism, and strong spin-orbit coupling at 2D interfaces which led to predictions of exotic phenomena such as unconventional superconductivity, helical/chiral modes, and Majorana phases in these interfaces. In order to explore these exotic phases high quality 1D devices are desirable. We demonstrate the realization of a gate tunable quantum point contact (QPC) structure embedded in a LAO/STO nanowire created using conductive AFM lithography. We observe integer quantized conductance in the units of e^2/h at high magnetic fields ($B = 9$ Tesla, $T = 50$ mK), a signature of the existence of 1D quantum channels. Significantly, we observe quantized conduction for nanowires as long as 1 μm, implying that transport is ballistic along the magnetic-field induced chiral edge states in these devices.

1We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-10-1-0524 and FA9550-12-1-0268), NSF (DMR-1124131 and DMR-1104191). AFOSR FA9550-12-1-0342 (CBE) and DMR-1234096 (CBE)

Shicheng Lu
University of Pittsburgh

Date submitted: 13 Nov 2014