8π-periodic Josephson effects in a quantum dot / quantum spin-Hall josephson junction system1 HOI-YIN HUI, CMTC, Univ of MD, College Park, JAY SAU, CMTC and JQI, University of Maryland — Josephson junctions made of conventional s-wave superconductors display 2π periodicity. On the other hand, 4π-periodic fractional Josephson effect is known to be a characteristic signature of topological superconductors and Majorana fermions [1]. Zhang and Kane have shown that Josephson junctions made of topological superconductors are 8π-periodic if interaction is used to avoid dissipation [2]. Here we present a general argument for how time-reversal symmetry and Z_2 non-trivial topology constrains the Josephson periodicity to be 8π. We then illustrate this through a microscopic model of a quantum dot in a quantum spin-hall Josephson junction.

1Work supported by NSF-JQI-PFC, LPS-CMTC and Microsoft Q