Quantum simulation with an array of transmon qubits: Bose-Hubbard model

SHAY HACOHEN-GOURGY, VINAY RAMASESH, QNL, University of California, Berkeley, CLAUDIA DE GRANDI, STEVEN GIRVIN, Departments of Physics and Applied Physics, Yale University, IRFAN SIDDIQI, QNL, University of California, Berkeley — Chains of capacitively-coupled transmons can emulate the Bose-Hubbard Hamiltonian when one considers the full level-structure of the circuit. Here, each individual transmon plays the role of a lattice site, with the excitation level of each transmon corresponding to the number of bosons occupying that particular site. The transmon’s anharmonicity gives rise to the attractive contact-interaction term, while the capacitive coupling realizes the hopping amplitude. We implement such a chain of 3 capacitively-coupled transmons in a single 3D microwave cavity. In our parameter regime, the ground state of the 3-excitation subspace is one in which all excitations lie on a single qubit. Using cavity-assisted bath engineering, it should be possible to cool from an initial state in this subspace to the ground state. We present the current status of this goal.

1This work is supported by AFOSR, Army Research Office W911NF1410011 and NSF DMR-1301798