Abstract Submitted for the MAR15 Meeting of The American Physical Society

Isotropic superconducting gap and electron-boson coupling in MgB2 multiband superconductor DAIXIANG MOU, RUI JIANG, VALENETIN TAUFOUR, REBECCA FLINT, SERGUEI BUD'KO, PAUL CAN-FIELD, ADAM KAMINSKI, Division of Materials Science and Engineering, Ames Laboratory, U.S. DOE — MgB₂ is a prototype multiband BCS/Elishberg superconductor with high transition temperature $T_C \sim 39$ K. In this talk, we will present electronic properties of this compounds measured by tunable laser ARPES. Momentum dependent gap structure on two σ Fermi surface around Γ is nearly isotropic with $\Delta_0 \sim 7$ meV, directly proving its s-wave pairing symmetry. Our data reveals a strong renormalization of the dispersion (kink) at ~65 meV, which is caused by coupling of electrons to E_{2g} phonon mode. In contrast to cuprates, the 65 meV kink in MgB₂ does not change significantly across T_C . More interestingly, we observe strong coupling to a second, low energy collective mode at 10 meV. This excitation vanishes above T_C and is likely a signature of the elusive Leggett mode.

> Daixiang Mou Division of Materials Science and Engineering, Ames Laboratory, U.S. DOE

Date submitted: 13 Nov 2014

Electronic form version 1.4