Abstract Submitted for the MAR15 Meeting of The American Physical Society

Short-Range Order of Mesomorphic Phase of a Semi-crystalline Polymer by Solid-State NMR: Isotactic Polypropylene¹ SHICHEN YUAN, TOSHIKAZU MIYOSHI, Univ of Akron — Mesophase is intermediate phase between crystalline and melt state. Characterization of short-range structures of disordered mesomorphic phase without long-range order is challenging issue in polymer characterization. The short range order was considered same as α or β iPP, or neither. In this work, a new strategy using ¹³C-¹³C through space interactions as well as molecular dynamics based on chemical shift anisotropy (CSA) re-orientation is proposed for evaluating short-range order of mesophase of isotactic-polypropylene (iPP). ¹³C-¹³C double quantum (DQ) build up curves of ¹³C 15 percent CH₃ selectively labeled iPP and spin dynamics simulations elucidate that local packing structures in mesophase is very close to that in β phase. Moreover, exchange NMR proves that the crystalline chains perform large amplitude motions in all α , β , and mesophase. The correlation time of overall dynamics of stems in mesophase follows the same Arrhenius line with that of β phase but is largely deviated from the Arrhenius line of the α phase. Through the obtained results, it is concluded that short-range order in mesophase is exceedingly close or same to those in β phase.

¹This work was financially supported by the National Science Foundation (Grant no. DMR-1105829) and by UA startup funds.

Shichen Yuan Univ of Akron

Date submitted: 13 Nov 2014 Electronic form version 1.4