Abstract Submitted for the MAR15 Meeting of The American Physical Society

Suppressed Incomplete Ionization of Shallow Donors in Germanium¹ JOSE MENENDEZ, CHI XU, CHARUTHA SENARATNE, JOHN KOUVETAKIS, Arizona State Univ — For doping levels $N_d > 10^{17}$ cm⁻³, an elementary analysis indicates that shallow donors should not be completely ionized in germanium at room temperature. The predicted degree of incomplete ionization (I.I.) represents a fundamental limitation in the quest for ultra-low sheet resistances, as required in Ge-based nMOS devices. Unfortunately, the experimental verification of the predictions is made difficult by the possible presence of inactive dopants, which also lead to free carrier concentrations $n < N_d$. In this work, we prepared *n*-type Ge films on Ge-buffered Si substrates using novel synthetic approaches that are expected to minimize the presence of inactive dopants. Higher-order germanes $(Ge_3H_8 \text{ and } Ge_4H_{10})$ were used as the source of Ge for growth at low temperatures. Phosphorus atoms were furnished via $P(MH_3)_3$ (M = Ge, Si) compounds in which the P atom is already bonded to three group-IV atoms in a way that is expected to promote substitutional incorporation. Spectroscopic ellipsometry and SIMS were used to determine n and N_d , respectively. The results indicate no observable I.I. Within experimental error, $n = N_d$, in contradiction with the elementary theory. These findings are compatible with the model developed by Altermatt et al. to explain I.I. phenomena in silicon.

 $^1\mathrm{Supported}$ by DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022

Jose Menendez Arizona State Univ

Date submitted: 13 Nov 2014

Electronic form version 1.4