55 Tesla coercive magnetic field in frustrated Sr$_3$NiIrO$_6$\(^1\) JOHN SINGLETON, Los Alamos Natl Lab, JAE-WOOK KIM, Rutgers University, CRAIG TOPPING, Oxford University, ANDERS HANSEN, Los Alamos Natl Lab, EUN-DEOK MUN, Simon Fraser University, SAMAN GHANNADZADEH, Oxford University, PAUL GODDARD, Warwick University, XUAN LUO, YOON SEOK OH, SANG-WOOK CHEONG, Rutgers University, VIVIEN ZAPF, Los Alamos Natl Lab — We have measured extremely large coercive magnetic fields of up to 55 T in Sr$_3$NiIrO$_6$, with a switched magnetic moment $\approx 0.8 \, \mu_B$ per formula unit. As far as we are aware, this is the largest coercive field observed thus far. This extraordinarily hard magnetism has a completely different origin from that found in conventional ferromagnets. Instead, it is due to the evolution of a frustrated antiferromagnetic state in the presence of strong magnetocrystalline anisotropy due to the overlap of spatially-extended Ir$^{4+}$ 5d orbitals with oxygen 2p and Ni$^{2+}$ 3d orbitals. This work highlights the unusual physics that can result from combining the extended 5d orbitals in Ir$^{4+}$ with the frustrated behaviour of triangular lattice antiferromagnets.

\(^1\)Supported by DOE BES program "Science in 100 T"