Simulation and measurement of a fluxonium qubit inductively coupled to a readout resonator1 W.C. SMITH, A. KOU, U. VOOL, I.M. POP, R.J. SCHOELKOPF, M.H. DEVORET, Department of Applied Physics, Yale University — Prototypical circuit QED experiments can be performed using a fluxonium qubit that shares a portion of its superinductance with an on-chip LC oscillator, dubbed an “antenna,” that is used as a readout resonator. However, the complete fluxonium-antenna artificial atom had not been previously understood in all coupling regimes. We have measured Hamiltonian parameters and decay rates by channeling microwave pulses into a rectangular waveguide containing the antenna-qubit system. Accurate modeling of energy spectra, dispersive shifts, and Purcell loss is achieved by diagonalizing the effective circuit Hamiltonian. We will present spectroscopy data, coherence times, and simulation results.

1Work supported by: IARPA, ARO, and ONR.