Abstract Submitted for the MAR15 Meeting of The American Physical Society

High Powerfactor in single and few-layer MoS2 YING WANG, YU YE, KEDAR HIPPALGAONKAR, YUAN WANG, XIANG ZHANG, University of California, Berkeley — The thermoelectric effect enables conversion between thermal and electrical energy, and provides one way to extract energy from waste heat. The efficiency of a thermoelectric device can be defined by a dimensionless figure of merit given by $ZT = S^2 \sigma T / \kappa$. In order to achieve efficient thermoelectric devices, $S^2\sigma$ needs to be kept high by optimizing the interplay between the S and σ . The thin layered transition-metal dichalcogenide semiconductor MoS₂ has attracted great interest because of two dimensional density of states and relatively high mobility, which could give a large S and σ . Here we study on pristine exfoliated 1L-, 2L- and 3L MoS_2 samples by simultaneous measurement of the Seebeck $\operatorname{coefficient}(S)$ and two probe electrical conductivity using nano-fabricated heater and thermometer. It firstly shows that atomic thin MoS2 which has a large effective band masses (m^*) as well as high mobilies (μ) , increases the powerfactor $S^2\sigma$ to as high as $8.5 \, mWm^{-1}K^{-2}$ at room temperature (twice as high as commercially used Bi₂Te₃). Further, we show for the first time that the confined two-dimensional density of states of the conduction band can be studied in monolayer MoS_2 by measuring the gate-dependent Seebeck voltage.

> Ying Wang University of California, Berkeley

Date submitted: 13 Nov 2014

Electronic form version 1.4