Evolution of Magnetism in Single-Crystal Ca$_2$Ru$_{1-x}$Ir$_x$O$_4$ (0 ≤ x ≤ 0.65)1 S.J. YUAN, J. TERZIC, J.C. WANG, L. LI, T.F. QI, W.H. SONG, S. ASWARTHAM, G. CAO, Center for Advanced Materials, Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA — We report structural, magnetic, transport and thermal properties of single-crystal Ca$_2$Ru$_{1-x}$Ir$_x$O$_4$ (0 ≤ x ≤ 0.65). Ca$_2$RuO$_4$ is a structurally-driven Mott insulator with a metal-insulator transition at $T_{MI} = 357$ K, followed by a well-separated antiferromagnetic order at $T_N = 110$ K. Substituting Ru with Ir enhances the spin-orbit coupling (SOC) and causes further orthorhombic distortions. As a result, a pronounced weak ferromagnetic behavior occurs, which enhances dramatically with increasing Ir concentration. The magnetic ordering temperature T_N increases from 110 K at $x = 0$ to 215 K at $x = 0.65$, along with enhanced magnetic anisotropy due to SOC. In addition, with increasing x, the metal-insulator transition T_{MI} increases initially and vanishes eventually.

1This work was supported by the National Science Foundation (NSF) under Grants No. DMR-0856234, and No. DMR-1265162.

S. J. Yuan
Center for Advanced Materials, Dept of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

Date submitted: 13 Nov 2014