Abstract Submitted for the MAR15 Meeting of The American Physical Society

Measurement of Specific Heat of Pr_{1-x}Nd_xOs₄Sb₁₂ from 11K-300K¹ TAYLOR MCCULLOUGH-HUNTER, SHOJI HISHIDA, PEI-CHUN HO, Physics Department, California State University, Fresno, BRIAN MAPLE, Physics Department, University of California, San Diego, TATSUYA YANAGISAWA, Physics Department, Hokkaido University, Japan — The filled skutterudite compound PrOs₄Sb₁₂ exhibits heavy fermion behavior and unconventional superconductivity at low temperatures ($T_c = 1.85K$). The exact causes of these behaviors are unknown. The compound NdOs₄Sb₁₂ exhibits ferromagnetism at a Curie temperature near 1 K. Originally, Nd doped compounds of the form Pr_{1-x}Nd_xOs₄Sb₁₂ were developed to investigate the effect of ferromagnetism on the unconventional superconductivity and heavy fermion behavior of PrOs₄Sb₁₂. The specific heat of $Pr_{1-x}Nd_xOs_4Sb_{12}$ (where x=0.25, 0.5, 0.75, 0.8, and 1) is measured at 11K-300K to investigate the compounds' normal state properties. The specific heat is measured using relaxation calorimetry of finite heat pulse in a cryocooler system. Values of the electronic specific heat coefficient, γ , for these compounds are estimated to be 10-60 mJ/K²-mol. This contrasts with previous low temperature measurements (<10K) of $NdOs_4Sb_{12}$ with γ approximately 520 mJ/K²-mol.

¹Research at CSU-Fresno is supported by NSF DMR-1104544; at UCSD by NSF DMR-1206553and US DOE DE FG02-04ER46105; at Hokkaido Univ. by MEXT, Japan.

Taylor McCullough-Hunter California State University, Fresno

Date submitted: 13 Nov 2014 Electronic form version 1.4