Bactericidal Effects of Charged Silver Nanoparticles in Methicillin-resistant Staphylococcus aureus1 DULCE ROMERO-URBINA, J. JESUS VELAZQUEZ-SALAZAR, HUMBERTO H. LARA, JOSEFINA ARELLANO-JIMENEZ, EDUARDO LARIOS, The University of Texas at San Antonio, TONY T. YUAN, YOON HWANG, MAURIS N. DESILVA, Naval Medical Research Unit, JBSA Fort Sam Houston, MIGUEL JOSE-YACAMAN, The University of Texas at San Antonio — The increased number of infections due to antibiotic-resistant bacteria is a major concern to society. The objective of this work is to determine the effect of positively charged AgNPs on methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) cell wall using advanced electron microscopy techniques. Positively charged AgNPs suspensions were synthesized via a microwave heating technique. The suspensions were then characterized by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) showing AgNPs size range from 5 to 30 nm. MSSA and MRSA were treated with positively charged AgNPs concentrations ranging from 0.06 mM to 31 mM. The MIC50 studies showed that viability of MSSA and MRSA could be reduced by 50% at a positively charged AgNPs concentration of 0.12 mM supported by Scanning-TEM (STEM) images demonstrating bacteria cell wall disruption leading to lysis after treatment with AgNPs. The results provide insights into one mechanism in which positively charged AgNPs are able to reduce the viability of MSSA and MRSA.

1This research is supported by National Institute on Minority Health and Health Disparities (G12MD007591) from NIH, NSF-PREM Grant No. DMR-0934218, The Welch Foundation and NAMRU-SA work number G1009.

Dulce Romero-Urbina
The University of Texas at San Antonio

Date submitted: 13 Nov 2014

Electronic form version 1.4