Abstract Submitted for the MAR15 Meeting of The American Physical Society

Twist liquids and gauging anyonic symmetries JEFFREY TEO, University of Virginia, TAYLOR HUGHES, EDUARDO FRADKIN, University of Illinois at Urbana-Champaign — Topological phases of matter in (2+1)D are frequently equipped with global symmetries that relabel anyons without changing the fusion and braiding structures. Twist defects are static symmetry fluxes that permute the labels of orbiting anyons. *Gauging* or *melting* these symmetries by quantizing defects into dynamical excitations leads to a wide class of more exotic topological phases known as *twist liquids*. We formulate a general gauging framework, characterize the anyon structure of twist liquids and provide solvable lattice models that capture the gauging phase transitions. Generalizing a discrete gauge theory, we represent the anyons in a twist liquid by compositions of not only fluxes and charges but also quasiparticle supersectors. We show the gauging transition amplifies the total quantum dimension by |G|, the order of the symmetry group, and thus modifies the topological entanglement entropy.

Jeffrey Teo Univ of Virginia

Date submitted: 13 Nov 2014

Electronic form version 1.4