Development of TiO$_2$-Xwt%InVO$_4$ Photocatalytic Nano-composites for Ambient Light Assisted Water Detoxification1

SESIA SRINIVASAN, Florida Polytechnic University, College of Innovation and Technology, JEREMIAH WILSON, Tuskegee University, Department of Physics, ERIC VICKERS, RYAN INTEGLIA, Florida Polytechnic University, College of Engineering — We have developed nano-composites of TiO$_2$-Xwt%InVO$_4$ for environmental and biomedical research applications. TiO$_2$ is commonly used as catalyst that utilizes the UV portion of the sun light spectrum to induce photo-oxidation and photo-reduction processes. We hypothesized that the combination of InVO$_4$ and TiO$_2$ will result in a material that will catalyze organic contaminants through photo-oxidation under visible light. We combined TiO$_2$ with 2,4,6,8,10wt% of InVO$_4$ via wet ball milling process. We have compared the various concentrations of InVO$_4$ on TiO$_2$ matrix by SEM, BET surface area analyzer, FTIR, XRD, and photodegradation of the organic contaminant Methyl Orange. After characterization we found that 4wt% InVO$_4$+TiO$_2$ mixture displayed the most promising characteristics for photo-oxidation under visible light; From the BET surface area analysis it showed the largest surface area out of the prior mentioned TiO$_2$ = Xwt% InVO$_4$ mixtures and a degradation amount equivalent to 50% of Methyl Orange contaminant over 7 hours under visible light. In conclusion, TiO$_2$-Xwt%InVO$_4$ displayed evidence of photo-oxidation under visible light conditions.

1Authors would like to acknowledge the support from Sigma Pi Sigma and Society of Physics Students. National Science Foundation and Florida Energy Systems Consortium are gratefully acknowledged for the research and education grants.

Sesha Srinivasan
Florida Polytechnic University, College of Innovation and Technology

Date submitted: 13 Nov 2014

Electronic form version 1.4