Abstract Submitted for the MAR15 Meeting of The American Physical Society

Investigation of magnetic order in $SmTr_2Zn_{20}$ (Tr = Fe, Co, Ru) and $\mathbf{Sm}Tr_2\mathbf{Cd}_{20}$ $(Tr = \mathbf{Ni}, \mathbf{Pd})^1$ DUYGU YAZICI, B. D. WHITE, UC, San Diego, P.-C. HO, California State University, Fresno, N. KANCHANAVATEE, K. HUANG, UC, San Diego, N. R. DILLEY, Quantum Design, M. B. MAPLE, UC, San Diego — Single crystals of the cage compounds $\mathrm{Sm}Tr_2\mathrm{Zn}_{20}$ ($Tr = \mathrm{Fe}, \mathrm{Co}, \mathrm{Ru}$) and SmT_2Cd_{20} (Tr = Ni, Pd) have been investigated by means of electrical resistivity, magnetization, and specific heat measurements. The compounds SmFe₂Zn₂₀, $SmRu_2Zn_{20}$, and $SmNi_2Cd_{20}$ exhibit ferromagnetic order with Curie temperatures of $T_C = 47.4$ K, 7.6 K, and 7.5 K, respectively, whereas SmPd₂Cd₂₀ is an antiferromagnet with a Néel temperature of $T_N = 3.4$ K. No evidence for magnetic order is observed in $SmCo_2Zn_{20}$ down to 110 mK. The Sommerfeld coefficients γ are found to be 57 mJ/mol-K² for SmFe₂Zn₂₀, 79.5 mJ/mol-K² for SmCo₂Zn₂₀, 258 mJ/mol-K² for SmRu₂Zn₂₀, 165 mJ/mol-K² for SmNi₂Cd₂₀, and 208 mJ/mol-K² for $SmPd_2Cd_{20}$. Enhanced values of Sommerfeld coefficients γ and a quadratic temperature dependence of the electrical resistivity at low temperature for $\mathrm{SmRu}_2\mathrm{Zn}_{20}$ and $SmPd_2Cd_{20}$ suggest an enhancement of the quasiparticle masses due to hybridization between localized 4f and conduction electron states.

¹Research at UCSD was supported by the U. S. DOE under Grant No. DE-FG02-04-ER46105 and the U. S. NSF under Award Grant No. DMR 1206553. Research at California State University, Fresno was supported by the U. S. NSF under Grant No. DMR 1104544

> Duygu Yazici UC, San Diego

Date submitted: 13 Nov 2014

Electronic form version 1.4