Seeing believes: Watching entangled sculpted branched DNA in real time

AH-YOUNG JEE1, JUAN GUAN, KEJIA CHEN, STEVE GRANICK,
Univ of Illinois - Urbana — The importance of branching in polymer physics is universally accepted but the details are disputed. We have sculpted DNA to various degrees of branching and used single-molecule tracking to image its diffusion in real time when entangled. By ligating three identical or varying length DNA segments, we construct symmetric and asymmetric \textit{Y} branches from elements of lambda-DNA with 16 \textmu m contour length, allowing for single-molecule visualization of equilibrium dynamics. Using home-written software, a full statistical distribution based on at least hundreds of trajectories is quantified with focus on discriminating arm-retraction from branch point motion. Some part of our observations is consistent with the anticipated \textit{relaxation through arm retraction} mechanism but other observations do not appear to be anticipated theoretically.

1Currently working as a researcher in Institute for Basic Science

\begin{flushright}
Jee Ah-Young
Univ of Illinois - Urbana
\end{flushright}

\begin{flushleft}
Date submitted: 14 Nov 2014
\end{flushleft}

Electronic form version 1.4