Anisotropic superconducting properties of nanowires at the LaAlO$_3$/SrTiO$_3$ (110) interface

PATRICK IRVIN, MENGCHENG HUANG, ANIL ANNADI, GUANGLEI CHENG, JEREMY LEVY, University of Pittsburgh, KALON GOPINADHAN, THIRUMALAI VENKATESAN, ARIANDO ARIANDO, National University of Singapore — The superconducting properties of nanowires created on anisotropic SrTiO$_3$ (110) surfaces were investigated. Nanowires are created using conductive AFM (c-AFM) lithography at the LaAlO$_3$/SrTiO$_3$(110) interface along the (001) and (110) crystallographic directions. In these devices we observe anisotropic superconductivity. The upper critical magnetic field along the (001) and (110) directions are found to be markedly different with a superconducting dome that is shifted for the two orientations. These observations can be explained by anisotropic orbital binding of Ti and O atoms or the differences in the spin-orbit coupling along the two different directions.

We gratefully acknowledge support for this work from NSF (DMR-1124131, DMR-1104191), AFOSR (FA9550-12-1-0057, FA9550-12-1-0268), and CRP-NRF (Tailoring Oxide Electronics).

Patrick Irvin
University of Pittsburgh

Date submitted: 14 Nov 2014

Electronic form version 1.4