Abstract Submitted for the MAR15 Meeting of The American Physical Society

Computational materials design of negative effective U system in the hole-doped Delafossite of CuAlO₂, AgAlO₂ and AuAlO₂ AKITAKA NAKANISHI, TETSUYA FUKUSHIMA, HIROKI UEDE, HIROSHI KATAYAMA-YOSHIDA, Osaka University — In order to realize the super-high- $T_{\rm C}$ superconductors ($T_{\rm C}>1,000{\rm K}$) based on the general design rules [1] for the negative U_{eff} system, we have performed computational materials design for the $U_{eff}<0$ system in the hole-doped two-dimensional (2D) Delafossite CuAlO₂, AgAlO₂ and AuAlO₂ from the first principles. We find the interesting chemical trend of $T_{\rm C}$ in 2D and 3D systems; where the $T_{\rm C}$ increases exponentially in the weak coupling regime ($|U_{eff}|$ (-0.44eV) $|< W(2{\rm eV})$, W is the band width) for hole-doped CuFeS₂ [2], then the $T_{\rm C}$ goes through a maximum when $|U_{eff}|$ (-4.88eV, -4.14eV) $|\approx W(2.8{\rm eV})$, 3.5eV) for hole-doped AgAlO₂ and AuAlO₂, and the $T_{\rm C}$ decreases with increasing $|U_{eff}|$ in strong coupling regime, where $|U_{eff}|$ (-4.53eV) $|> W(1.7{\rm eV})$ for hole-doped CuAlO₂

- [1] H. Katayama-Yoshida et al., Appl. Phys. Express, 1 081703, 2008.
- [2] T. Fukushima et al., J. Phys. Condens. Matter, 26 355502, 2014.

Akitaka Nakanishi Osaka University

Date submitted: 14 Nov 2014 Electronic form version 1.4