Abstract Submitted for the MAR15 Meeting of The American Physical Society

Mixed-valence magnetism in TiO₂/TiO_x superlattices W.C. HSIEH, National Sun-Yat Sen University, Taiwan, P.V. WADEKAR, University of Liverpool, UK, H.C. HUANG, C.F. CHANG, National Sun-Yat Sen University, Taiwan, M.S. WONG, National Dong Hua University, Taiwan, H.W. SEO, University of Arkansas, USA, F.C. CHUANG, Q.Y. CHEN, National Sun-Yat Sen University, Taiwan — Epitaxial TiO₂ and TiO_x superlattices, \sim 1-nm thick per layer by sputtering at 570°C using pure argon on sapphire substrates. From HR-TEM, the periodically alternating layers are well-defined. XPS analyses based on the binding energy of Ti 2p_{3/2} peaks suggest the co-existence of Ti⁺³ and Ti⁺⁴, thus verifying the mixed-valence nature. The M(H) curves measured at room temperature using SQUID showed hysteretic loops typical of ferromagnetism. Electrical transport measurements were done at zero field demonstrate transition of charge ordering at low temperatures, reminiscent of what was found in Ti-rich Ti_{1+x}O₂ single-layer thin films, made by Ti ion implantation into TiO₂ crystals, in which randomly distributed TiO₂, Ti₂O₃ and TiO were found to coexist. Preliminary First-principle (ab initio) calculations to understand the roles of oxygen vacancies in various TiO₂ super-cells could indeed lead to spontaneous magnetizations. We thus argue that mixed-valence titanium ions are responsible for the magnetism

W.C. Hsieh National Sun-Yat Sen University, Taiwan

Date submitted: 14 Nov 2014 Electronic form version 1.4