The Interdependent Atomic and Electronic Structures of Graphene on Hexagonal Boron Nitride

JEIL JUNG, Department of Physics, National University of Singapore, ASHLEY DASILVA, ALLAN MACDONALD, Department of Physics, The University of Texas at Austin, SHAFFIQUE ADAM, Yale-NUS college, Graphene Research Centre and Department of Physics, National University of Singapore — Recent progress in preparing well controlled 2D van der Waals heterojunctions has opened up a new frontier in materials physics. I will address the intriguing energy gaps that are sometimes observed when a graphene (G) sheet is placed on a hexagonal boron nitride (hBN) substrate, demonstrating that they are produced by an interesting interplay between structural and electronic properties, including electronic many-body exchange interactions. Our theory is able to explain the observed gap behavior by accounting first for the structural relaxation of graphene’s carbon atoms when placed on a hBN substrate and then for the influence of the substrate on low-energy π-electrons located at relaxed carbon atom sites. All three contributions of the moire pattern pseudospin Hamiltonian play a role in defining the features of the moire bands including the degeneracy of the mini-Dirac cones and the particle-hole asymmetry. We find that the effective anisotropic strains arising from virtual hopping are associated with effective magnetic fields on the order of \(\sim 10 \) T and they dominate over the pseudomagnetic vector potentials generated by the moire strains due to partial commensuration.

This work is supported by the Singapore National Research Foundation NRF-NRFF2012-01.

Jeil Jung
Graphene Research Centre and Department of Physics, National University of Singapore

Date submitted: 14 Nov 2014

Electronic form version 1.4