Electronic structure and thermoelectric properties of \((\text{PbSe})_m/(\text{SnSe})_n\) superlattice: A first principles study\(^1\) Duc Cuong Do, Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 680-749, South Korea, S.H. RHIM, SOON CHEOL HONG, Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 680-749, South Korea — Figure of merit (ZT) of thermoelectric materials can be enhanced by lowering thermal conductivity or/and increasing electrical conductivity. The extremely high ZT of layered structure \(\text{SnSe}^2\) opened up a new direction in study of thermoelectricity due to its low thermal conductivity, which, however, is limited to high temperature. Here, we performed first principles density functional calculations to explore room-temperature thermoelectricity. We consider \((\text{PbSe})_m/(\text{SnSe})_n\) superlattices with different period, whose quantum well structure is expected to increase electrical conductivity by modulation of charge doping at interface. Calculations of Seebeck coefficients for the superlattices are presented.

\(^1\)Supported by the Ministry of Trade, Industry & Energy, Korea (20132020000110) and Priority Research Centers Program (2009-0093818) through National Research Foundation of Korea.

\(^2\)Li-Dong Zhao et al., Nature \textbf{508}, 373 (2014).